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Abstract—Neural Network pruning is commonly used to re-
duce the size of a neural network, reducing the memory footprint,
while maintaining an acceptable loss. However, currently the
only approach explored for removing a parameter from a neural
network is to remove the parameter suddenly, irrespective of the
pruning method, be it one-shot, iterative or sparsity-induced.
We hypothesize that this sudden removal will cause the loss
of the information contained within the removed parameters,
information which could be useful when retraining the neural
network after pruning. To resolve this, we propose Soft Pruning,
a method of slowly decaying parameters out of a neural network.
We compare this to one-shot pruning on the vision-based tasks
of classification, autoencoding, and latent space dimensionality
reduction. In every experiment, Soft Pruning is able to match
or outperform one-shot pruning; in classification, Soft Pruning
enables pruning to significantly greater extents than one-shot
pruning, retaining over 60% accuracy where one-shot pruning
becomes equivalent to random guessing. In autoencoding, Soft
Pruning is able to achieve up to 17% lower loss after pruning.
Finally, applied to latent space dimensionality reduction, Soft
Pruning is shown to achieve more than 60% lower loss compared
to one-shot pruning.

Index Terms—neural network pruning, latent space optimisa-
tion

I. INTRODUCTION

Neural Network pruning originated as a method to reduce
the memory footprint of a neural network while retaining as
high an accuracy as possible. Various original methods where
shown to be both simple and effective in neural network
pruning, with many still being used in practice including
magnitude-based pruning and hessian-based pruning. In recent
years, a variety of pruning methods have been proposed which
have shown progressively greater effectiveness [1]–[9].

Current pruning methods aim to remove the chosen pa-
rameters from the neural network suddenly, destroying the
information contained within those parameters in a single cut.
We hypothesize that this will remove information from the
neural network and so make retraining difficult after pruning,
particularly at high levels of pruning. To resolve this, we
propose Soft Pruning: decaying the parameters to be pruned
out of the neural network over batches or epochs while training
the parameters in the neural network that are not being pruned.
This enables the information contained within the pruned
parameters to be transferred throughout the neural network

before being completely removed, information which would
otherwise have been lost had a single cut been used. We
hypothesize that this conservation of information will enable
lower loss and greater accuracy at higher levels of pruning
compared to the conventional method of sudden pruning and
then retraining the neural network, which we refer to as hard
pruning.

First, we show that Soft Pruning results in higher accuracy
than hard pruning in the case of classification, particularly
at high levels of pruning, achieving above 60% accuracy on
a 10-way classification problem where hard pruning is only
able to achieve 10% accuracy. We then illustrate the use of
Soft Pruning in an image autoencoder, where we apply Soft
Pruning to the decoder, showing that Soft Pruning improves on
hard pruning in all cases tested, in the case of FashionMNIST,
reporting greater than 16% reduction in the loss compared to
hard pruning. Finally, we use Soft Pruning for the purpose
of latent space dimensionality reduction and show that it is
possible to reduce the dimensionality of the latent space of an
autoencoder while retaining a low loss. Soft Pruning is able to
significantly outperform hard pruning, achieving up to 60.9%
reduction in loss after pruning, while also only increasing in
loss by 8.4% from the original unpruned neural network when
applied using the MNIST dataset.

Latent space operations are becoming increasingly impor-
tant, with greater emphasis recently placed on the latent space
in modern large neural networks, such as the latent diffusion
models proposed in recent years [10], [11]. The ability to soft
prune the latent space more effectively enables a form of latent
space optimisation and fine-tuning, which could be critical in
both achieving a well performing neural network as well as
reducing the memory footprint of the neural network.

II. RELATED WORK

Initial methods of pruning neural networks were first pro-
posed in the 1990s. This included magnitude-based pruning,
removing low magnitude parameters, and using second-order
methods to perform pruning. Optimal Brain Damage [12],
one of the original works regarding the use of second-order
pruning methods, showed that the use of a diagonal hessian ap-
proximation enables identifying low-saliency parameters that
can be removed from the neural network with minimal effect



on the loss. This was improved in another paper published
three years later [13], showing the inverse hessian can be used
to better identify low saliency parameters, yielding a neural
network which produces a lower loss when those parameters
are pruned. Due to the simplicity of Hessian-based pruning,
both theoretical and practical, this method is still used today.

Magnitude-based pruning is another original method of
pruning that has re-gained popularity in recent years [1], [6]–
[8], [14], [15], with work showing it is both efficient and
effective when applied to large neural networks and difficult
problems [16], [17]. In this work, we focus on magnitude-
based pruning. This is because our work is not about the
method of selecting the parameters to prune, but rather the
method of removing them, and magnitude based pruning is
both a simple and effective method.

In terms of the method used to remove the selected weights,
three main approaches have emerged: One-shot pruning [1]–
[4] which involves pruning the neural network once then
retraining the neural network from the pruned state, iterative
pruning [5]–[8] which involves iteratively pruning and retrain-
ing the neural network, and sparsity induced neural networks
[5], [9], [17]–[19] which involves specifying a sparsity mask,
either at the beginning of training or learning a sparsity
mask during training, and training the neural network with
this sparsity mask. Another method when seeking a smaller
network with a similar architecture is simply to train a smaller
neural network on the given task, which has been shown
to achieve good results on challenging tasks [20]–[22]. The
smaller dense neural networks can be more efficient than
the larger pruned network, if structured sparsity is not used;
however, this is not a method of pruning and, based on prior
work [23], it would be expected to perform worse than using
a larger neural network which has been pruned.

Our method of pruning does not fall under any of these cate-
gories because each of them imply a single pruning iteration, at
the beginning of, iteratively during, or after training, followed
by retraining the neural network. Instead, in this work, the
neural network is pruned over several iterations by decaying
the parameters that are selected to be pruned out of the neural
network without retraining the neural network at the end of
the process. The closest method to this, and the one against
which we compare our work, is one-shot pruning followed by
retraining, because every parameter to be pruned is modified
at once. Iterative pruning is similar to this method however
involves iterative steps of pruning, each step of which prunes
different parameters. This is different from taking a snapshot
of the weights to prune and then removing those weights in
a single cut (one-shot) or, as we propose, by decaying the
parameters out of the neural network. Therefore we do not
compare our work against iterative pruning, because, for a fair
comparason, that would require iterative Soft Pruning which
we do not study in this paper.

A similar method to ours has been suggested when pruning
for structured sparsity [6], but the authors do not study
the difference in the pruning methods, only suggesting that
decaying the parameters will likely be better. Here such a study

is performed.

III. METHOD

In this work, we propose slowly decaying parameters out
of a neural network, which we term Soft Pruning, in contrast
to suddenly cutting the parameters out of a neural network
as is done in conventional one-shot pruning, which we term
hard pruning. Several different decay functions can be used for
the Soft Pruning operation, and we considered each of those
shown in Figure 1. In this paper we use the exponential decay
function. This is because in our initial experiments on trivial
problems, each of the decay functions was found to reach the
same result, with the exponential decay function reaching that
result the fastest.

Our method of pruning can can be expressed mathematically
as follows. Using Wij as the parameter matrix, Mij as the
pruning mask, whose values are 1 to indicate that a parameter
is to be pruned and 0 to indicate the parameter should remain,
x to represent the decay factor and ∆Wij to represent the
gradients of the parameter matrix, a new parameter update
rule can be defined by extending gradient descent to allow for
reducing the value of chosen (masked) parameters to zero,

Wij = Wij ·Mij · x+ (Wij +∆Wij) · (1−Mij) (1)

To choose which parameters to remove, we use the magni-
tude of the parameter. This is because this method is a popular
method in practice and has been shown to be effective and
efficient. A more correct but computationally intensive method
would be to make use of the Hessian to determine which
parameters to remove; however, this cannot be applied gener-
ally because such a method can become too computationally
intensive to compute for large neural networks. When pruning
dimensions of the latent space (section VI) we make use of
skeletonization [24] for pruning nodes within the latent space
(ie pruning dimensions). For all of the neural networks used in
this work, we use the tanh activation function. This is because
magnitude-based pruning when using ReLU is equivalent to
random pruning when the context of the parameter within the
neural network is not considered due to the unbounded nature
of the ReLU activation function.

IV. SOFT PRUNING: CLASSIFICATION

We first perform classification using simple feedforward
neural networks, the architectures of which are given in
the Appendix. This is trained on three vision based tasks,
including the classification of the MNIST handwritten digit
dataset [25] (Figure 2), the FashionMNIST clothing dataset
[26] (Figure 4) and the CIFAR10 dataset [27] (Figure 5).
The hyperparameters and neural network architectures used
are given in the Appendix.

As shown in Figure 2, 4 and 5, hard pruning alone is consis-
tently worse than hard pruning with retraining or Soft Pruning,
as would be expected. Note that hard pruning and Soft Pruning
were both given the same amount of data (1 epoch was used in
this experiment) given in the same order, and yet Soft Pruning
is able to perform significantly better at higher levels of



Fig. 1. A sample of Soft Pruning decay functions. In this work, we use the
exponential decay function shown in blue. Alternative possible functions are
also shown.

pruning. We propose this is because at lower levels of pruning,
there are enough nodes such that the information lost from
hard pruning can be recovered by retraining. However, at larger
amounts of pruning, the performance of hard pruning degrades
significantly more than Soft Pruning. This was observed in
all tested datasets: MNIST, FashionMNIST and CIFAR10.
Furthermore, a plateau is observed when applying Soft Pruning
to the MNIST and CIFAR10 experiments. We suggest that
this is caused by retaining the features that give as high
accuracy as possible, while disregarding other features. These
features could be simple features, but they may be expressed
by complicated parametric configurations within the trained
neural network. These parametric configurations are forcibly
compressed by the application of Soft Pruning, and it is only
when they cannot be expressed in the few nodes remaining that
there is a sudden degradation in the accuracy. Notice that in
the case of CIFAR10, the accuracy is particularly low, staring
at 50% accuracy when pruning 70% of the neural network
and expressing a Soft Pruning plateau at approximately 35%
accuracy, but this is higher than random guessing. In this case,
the neural network configuration may be too small or too
simple to represent the CIFAR10 dataset with high accuracy.
However a platau is observed when using Soft Pruning where
no such platau is observed when using hard pruning, which
suggests Soft Pruning is able to preserve information which
hard pruning cannot, supporting our hypothesis.

In the case of FashionMNIST, a continuous degradation is
observed when using Soft Pruning as the level of pruning is
increased, and there is no platau. We believe this is because the
FashionMNIST dataset does not contain classes which appear
similar to each other, many of the classes could appear distinct
to a neural network classifier. And so, because each class is as
complicated as every other class, there is a gradual decrease
in performance as the classifier keeps as much information as
possible to perform the classification to as high an accuracy
as possible.

In the case of the MNIST dataset, higher than 60% accuracy
is retained until 97% of the parameters are pruned when using
Soft Pruning. To further analyze this, we plot a confusion
matrix for the classifications of the 95% pruned model, shown
in Figure 3. The Soft Pruning is shown to retain enough
information to correctly predict 1 and 7 well, but loses
accuracy on classes 3 and 8. This is unexpected because
intuitively it would be simpler to merge similar classes and
retain distinctions between different classes; however, in this
case the opposite appears to be happening. The classes with
more similar, but simpler, features are retained the best, with
those classes having the highest accuracy after pruning, and
the classes with the most distinctive features, such as 3 and 8,
are merged into the classes with simpler features.

Fig. 2. The results of Soft and hard pruning on the MNIST dataset. The
network architecture and hyperparameters used for the training are given in
the Appendix. Notice there is a platau present in Soft Pruning which is missing
in hard pruning with retraining; in this task, Soft Pruning can achieve better
performance than hard pruning with retraining at high levels of pruning. The
initial number of parameters is 211,626. Pruned percentage is the percentage
of parameters that are pruned from the neural network.

V. SOFT PRUNING: AUTO-ENCODER

We next perform a comparison of Soft Pruning and hard
pruning on the case of an autoencoder encoding visual in-
formation. We make use of the same datasets as in the
previous section: MNIST, FashionMNIST and CIFAR. In this
experiment, one epoch of training data was used for both Soft
Pruning and hard pruning with retraining. Hard pruning alone
was also tested on these experiments but gave a significantly
higher loss value than hard pruning with retraining or Soft
Pruning, at all levels of pruning. Therefore the results of hard
pruning alone are excluded from the figures of this experiment.
In all cases tested, Soft Pruning is able to outperform hard
pruning on loss. At levels of pruning between 80%-90%, a
0%-13.1% improvement in loss compared to hard pruning is
observed; at higher levels of pruning, this increases up to a
17.6% improvement in loss. Given that the same parameters
are ultimately pruned, this suggests that Soft Pruning is able



Fig. 3. A confusion matrix of the 95% soft pruned neural network applied
to the MNIST training dataset.

TABLE I
SOFT PRUNING RESULTS | LINEAR CLASSIFICATION

Dataset Accuracy (%)

Pruned Percentage 90% 95% 97%

MNIST

Hard Prune 79.9 10.4 10.4
Hard Prune & Retrain 86.1 10.4 10.4
Soft Prune 85.9 72.3 62.3

FashionMNIST

Hard Prune 68.4 10.0 10.0
Hard Prune & Retrain 79.3 10.0 10.0
Soft Prune 79.1 47.8 37.0

CIFAR-10

Hard Prune 30.3 10.0 10.0
Hard Prune & Retrain 48.1 10.0 10.0
Soft Prune 47.7 37.4 35.4

to retain information contained within the pruned parame-
ters, supporting our hypothesis. In the case of the MNIST
autoencoder (Figure 6, left), Soft Pruning is marginally better,
achieving 0%-1.4% lower loss up to 90% parameters pruned,
then achieving up to 9.2% lower loss, where the loss begins
to increase rapidly. Comparing Soft Pruning to hard pruning
on the FashionMNIST dataset (Figure 6, center) shows clearly
that Soft Pruning can achieve significantly lower levels of loss
as the level of pruning increases. This dataset is visually harder
to reproduce using an autoencoder because there are more
features in each image, hence, using Soft Pruning allows for
up to 16.7% lower loss by preserving the information present
in the original unpruned neural network, with consistently
greater than 10% difference in the loss above 90% parameters
pruned. In the case of CIFAR(Figure 6, right), up to 90% of the
parameters pruned there is again marginal difference between

Fig. 4. The result of pruning a neural network on the FashionMNIST dataset.
The neural network used is given in the Appendix. The initial number of
parameters is 211,626.

Fig. 5. The result of pruning a classifier on the CIFAR10 dataset. Notice
a platau is observed at high levels of pruning, similar to the FashionMNIST
dataset. The initial number of dense parameters is 84,522. Here a convolutional
feature extractor is used on the input of the neural network.

Soft Pruning and hard pruning, where Soft Pruning is lower by
0%-1.3%. At higher levels of pruning however this difference
increases up to 17% lower loss.

Each of these experiments shows that Soft Pruning is able
to match or outperform hard pruning. Even though hard and
Soft Pruning were given the same amount of retraining data,
Soft Pruning is able to preserve information from the unpruned
neural network and so is able to consistently report lower loss
than hard pruning at high levels of pruning.

In each experiment, hard pruning is able to match Soft Prun-
ing until a point. We suggest this is because, until this point,
any information that is lost can be recovered by retraining
the neural network, making use of the remaining parameters
to achieve a result equivalent to Soft Pruning. When there
are insufficient parameters remaining, the performance of hard
pruning degrades significantly more than Soft Pruning.



Fig. 6. The results of pruning a visual autoencoder using either Soft Pruning or hard pruning on the MNIST (left), FashionMNIST (center) and CIFAR (right)
datsets. Soft Pruning is able to either match or outperform hard pruning in all experiments. Only the decoder is pruned. The initial number of parameters in
the decoder of the autoencoder is 590,912.

Fig. 7. An illustration of the neural network used for the latent space dimensionality reduction applied to the MNIST and FashionMNIST datasets. Blue
layers indicate layers that were not changed, red indicates nodes which are being decayed out of the neural network, and green indicates nodes which can
update their parameters (using the gradient provided by backpropagation.)

VI. SOFT PRUNING: LATENT SPACE
DIMENSIONALITY REDUCTION

Finally, we study the effect of Soft Pruning applied to latent
space dimensionality reduction. It can be beneficial to keep
a latent space small because this can reduce complexity of
interacting with it and can increase processing speed.

In order to determine which nodes in the latent space to
prune, we make use of the skeletonization algorithm [24]. This
calculates the saliency of each node in a neural network by
taking the derivative of the loss with respect to a multiplicative
parameter on each node. Putting this mathematically, the
saliency of a node can be calculated by first replacing every
node ni with a new value

ni = ai ·mi (2)

The saliency of a node si can then be found by taking the
gradient of the loss E with respect to the parameter ai,

si =
∂E

∂ai
(3)

The magnitude of this measure indicates the saliency, si, of
a node, ni, within the neural network, where lower values
indicate the node has a smaller effect on the loss. When
removing the nodes, we sort the nodes by saliency and select
the top-n lowest saliency nodes to remove. To remove the

node, we prune the parameters on either side of the node,
which has the effect of pruning the node.

We test this method on the same datasets as used in the
previous sections: MNIST, FashionMNIST and CIFAR. In all
cases, Soft Pruning is shown to outperform hard pruning, often
by a significant margin. In the case of MNIST and Fashion-
MNIST, we reuse the same autoencoder from the previous
section, but freeze every parameter except the parameters on
the input and output of the latent space (illustrated in Figure
7). We then identify the nodes to prune within the latent space
using skeletonisation and prune the parameters on either side
of the selected nodes. hard pruning alone produced results that
are particularly poor and appear off the graph and so are not
including in the figures for this experiment. In this experiment,
five epochs of training data are used for both Soft Pruning and
hard pruning with retraining.

As shown in Figure 8 (MNIST) and Figure 10 (Fashion-
MNIST), Soft Pruning is able to retain a significantly lower
loss than hard pruning with retraining as the pruning level
increases. Furthermore, the use of Soft Pruning caused the
loss to only increase marginally up to 95% of the nodes
pruned from a 64 node latent space. Given the same nodes
were pruned for both hard pruning and Soft Pruning, this
clearly shows Soft Pruning is able to conserve the information
within the nodes and enable achieving a consistently lower loss



Fig. 8. The results of progressively decreasing the dimensionality of the
latent space of the autoencoder for the MNIST dataset. The latent space has
64 nodes before pruning.

than hard pruning. In the case of MNIST, the loss from Soft
Pruning is found to be up to 60.9% lower than the loss from
hard pruning with retraining. In the case of FashionMNIST,
the loss when using Soft Pruning is up to 35.8% lower than
when using hard pruning with retraining. Furthermore, the
loss at each pruning level remains close to the loss of the
unpruned model when using Soft Pruning, with MNIST only
increasing by 8.4% at 95% pruned, in comparison to the 154%
increase found using hard pruning with retraining. A similar
result is also found on the FashionMNIST dataset, with the
loss increasing by only 8.3% at 95% pruned, compared to a
90% increase using hard pruning with retraining. This result
supports our hypothesis that the use of Soft Pruning enables
conserving useful data within the pruned parameters, enabling
a significantly lower loss, compared to hard pruning, as the
level of pruning increases.

In the case of CIFAR, we use a convolutional encoder
and decoder with a dense layer inbetween containing a 64
dimension latent space. The dense layer is used because this
paper does not study pruning the weights of a convolutional
layer, which, due to the nature of a convolution operation,
could have different ramifications compared to pruning a
dense layer. As shown in Figure 9, Soft Pruning is able to
consistently achieve over 10% lower loss than hard pruning
with retraining, reaching a difference of 20.7% at 95% of the
parameters pruned.

VII. CONCLUSION

In this paper we propose Soft Pruning and apply it to
three different visual tasks: classification, autoencoding and
latent space dimensionality reduction. In all instances, Soft
Pruning is shown to match or outperform hard pruning, with
significant improvements in performance appearing at high
levels of pruning. Given this difference in performance despite
having the same amount of retraining data as hard pruning, our
work suggests that Soft Pruning is able to better preserve the

Fig. 9. The results of progressively decreasing the dimensionality of the
latent space of the autoencoder for the CIFAR dataset using either soft or
hard pruning. The latent space has 64 nodes before pruning.

Fig. 10. The results of progressively decreasing the dimensionality of the
latent space of the autoencoder for the FashionMNIST dataset using either
soft or hard pruning. The latent space has 64 nodes before pruning.

parametric information present in the original unpruned neural
network, achieving a lower loss after pruning, supporting our
hypothesis.

VIII. FUTURE WORK

In this work we apply our method to feedforward dense
layers in a neural network, the generalisation of the results
presented in this paper to other types of neural network
layers and architectures has yet to be explored. Pruning a
convolutional neural network using larger datasets would be
expected to show similar results to those presented in this
work but such a study could yield additional insight into Soft
Pruning applied in this application. Similarly recurrent neural
networks are not studied in this work and a study of Soft
Pruning applied to a recurrent task, such as language modeling
or reinforcement learning, could show further improvements
when using this method.



TABLE II
SOFT PRUNING RESULTS

LATENT SPACE DIMENSIONALITY REDUCTION

Dataset Loss (×10−3)

Pruned Percentage 25% 50% 75%

MNIST

Hard Prune 5.70 11.52 17.56
Hard Prune & Retrain 2.21 2.69 3.73
Soft Prune 2.02 2.15 2.20

FashionMNIST

Hard Prune 8.15 15.9 22.9
Hard Prune & Retrain 3.34 3.80 4.58
Soft Prune 3.23 3.37 3.47

CIFAR

Hard Prune 13.08 19.06 25.91
Hard Prune & Retrain 7.41 8.79 11.86
Soft Prune 6.77 8.18 10.66

Due to our method performing continuous parametric opti-
misation, it should also be possible to optimise wanted features
into the latent space during pruning or optimise out unwanted
features during pruning, leaving a fine-tuned latent space for
a given task. This could be beneficial where only a fraction of
the space from the original unpruned neural network is needed.

IX. REPRODUCIBILITY STATEMENT

All the code in this paper is hosted online at [Link hidden
for peer review]. Random seeds are used to ensure the results
are reproducible.

APPENDIX
NETWORK ARCHITECTURES & HYPERPARAMETERS

For every neural network presented, the tanh activation func-
tion is applied after every intermediary dense or convolutional
layer excluding the flatten, reshape, sigmoid layers. Addition-
ally no activation function is applied before the softmax layers.

A. Classifier

For training, the stochastic gradient descent (SGD) opti-
miser with a learning rate of 0.01 and no momentum or weight
decay was used. For MNIST and FashionMNIST, both datasets
have 60,000 images in total, in this work 50,000 images were
used for training the neural network. The 10,000 were used
to ensure the results generalise to the test dataset. The neural
network architectures used in the classification task are given
in Table III. Before input to the neural network, the images
of every dataset were channel-wise normalised and no other
data augmentation was used.

B. Autoencoder

The neural network architectures used are given in Table V.
For training, the AdamW optimiser is used with a learning rate
of 0.001 and weight decay of 0.0001. For retraining, both in

the Soft Pruning and hard pruning case AdamW is used again
with the same hyperparameters. The same datasets used in
the classifier tasks were used here, with the same training/test
splits. The same data augmentation was used as in the Classifer
section.

C. Latent Space Dimensionality Reduction

The neural network architectures used for the latent space
dimensionality reduction experiments are given in Table IV.
The same optimiser and data augmentation is used as in the
Autoencoder section.

TABLE III
CLASSIFICATION

MNIST & FashionMNIST CIFAR

FLATTEN FLATTEN
Dense(256) Conv2D(8, 3x3)
Dense(128) Max Pool(2x2)
Dense(64) Conv2D(16, 3x3)
Dense(32) Max Pool(2x2)
Dense(10) Dense(576)

SOFTMAX Dense(128)
Dense(64)
Dense(32)
Dense(10)

SOFTMAX

TABLE IV
AUTOENCODER (LATENT SPACE DIMENSIONALITY REDUCTION)

MNIST &
FashionMNIST

CIFAR

FLATTEN FLATTEN
Dense(512) Conv2D(64, 3x3)
Dense(256) Conv2D(128, 3x3)
Dense(128) Max Pool(2x2)
Dense(128) Conv2D(128, 3x3)

== Dense(64) == Conv2D(128, 3x3)
Dense(128) Max Pool(2x2)
Dense(128) Conv2D(128, 3x3)
Dense(256) FLATTEN
Dense(512) == Dense(64) ==

RESHAPE(28x28) RESHAPE(8, 3x3)
SIGMOID ConvTranspose2D(128, 3x3)

SCALE(2)
ConvTranspose2D(128, 3x3)
ConvTranspose2D(128, 3x3)

SCALE(2)
ConvTranspose2D(128, 3x3)
ConvTranspose2D(3, 3x3)

SIGMOID



TABLE V
AUTOENCODER

MNIST & FashionMNIST & CIFAR

FLATTEN
Dense(512)
Dense(256)
Dense(128)
Dense(128)

== Dense(64) ==
Dense(128)
Dense(128)
Dense(256)
Dense(512)

RESHAPE(28x28)
SIGMOID
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E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates,
Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper
files/paper/2019/file/d010396ca8abf6ead8cacc2c2f2f26c7-Paper.pdf

[19] T. Dettmers and L. Zettlemoyer, “Sparse networks from scratch: Faster
training without losing performance,” 2019.

[20] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understanding,”
in Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), J. Burstein,
C. Doran, and T. Solorio, Eds. Minneapolis, Minnesota: Association
for Computational Linguistics, Jun. 2019, pp. 4171–4186. [Online].
Available: https://aclanthology.org/N19-1423

[21] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019. [Online].
Available: https://openai.com/research/better-language-models

[22] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,
M. Diab, X. Li, X. V. Lin, T. Mihaylov, M. Ott, S. Shleifer, K. Shuster,
D. Simig, P. S. Koura, A. Sridhar, T. Wang, and L. Zettlemoyer, “Opt:
Open pre-trained transformer language models,” 2022.

[23] S. G. Michael H. Zhu, “To prune, or not to prune: Exploring the
efficacy of pruning for model compression,” 2018. [Online]. Available:
https://openreview.net/forum?id=S1lN69AT-

[24] M. C. Mozer and P. Smolensky, “Skeletonization: A technique
for trimming the fat from a network via relevance
assessment,” in Advances in Neural Information Processing
Systems, D. Touretzky, Ed., vol. 1. Morgan-Kaufmann, 1988.
[Online]. Available: https://proceedings.neurips.cc/paper files/paper/
1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf

[25] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[26] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[27] (2009) Learning multiple layers of features from tiny images. [Online].
Available: https://www.cs.toronto.edu/∼kriz/learning-features-2009-TR.
pdf

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=B1VZqjAcYX
https://proceedings.neurips.cc/paper_files/paper/2021/file/6e8404c3b93a9527c8db241a1846599a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/6e8404c3b93a9527c8db241a1846599a-Paper.pdf
https://openreview.net/forum?id=SyeyPEH23N
https://openreview.net/forum?id=bMXueK316u
https://openreview.net/forum?id=bMXueK316u
https://proceedings.neurips.cc/paper_files/paper/2016/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/4512
https://ojs.aaai.org/index.php/AAAI/article/view/4512
https://openreview.net/forum?id=Ig-VyQc-MLK
https://openreview.net/forum?id=di52zR8xgf
https://openreview.net/forum?id=di52zR8xgf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/303ed4c69846ab36c2904d3ba8573050-Paper.pdf
https://openreview.net/pdf?id=r1eLk2mKiX
https://openreview.net/forum?id=S1gSj0NKvB
https://openreview.net/forum?id=S1gSj0NKvB
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://arxiv.org/abs/1902.09574
https://proceedings.neurips.cc/paper_files/paper/2019/file/d010396ca8abf6ead8cacc2c2f2f26c7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/d010396ca8abf6ead8cacc2c2f2f26c7-Paper.pdf
https://aclanthology.org/N19-1423
https://openai.com/research/better-language-models
https://openreview.net/forum?id=S1lN69AT-
https://proceedings.neurips.cc/paper_files/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1988/file/07e1cd7dca89a1678042477183b7ac3f-Paper.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

	Introduction
	Related Work
	Method
	Soft Pruning: Classification
	Soft Pruning: Auto-encoder
	Soft Pruning: Latent Space  Dimensionality Reduction
	Conclusion
	Future Work
	Reproducibility Statement
	Appendix: Network Architectures & Hyperparameters
	Classifier
	Autoencoder
	Latent Space Dimensionality Reduction

	References

